# Obviously were why radiometric dating works And have

Radiometric dating , radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon , in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. Together with stratigraphic principles , radiometric dating methods are used in geochronology to establish the geologic time scale. By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change. Radiometric dating is also used to date archaeological materials, including ancient artifacts. Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied.

Explore over 4, video courses. Find a degree that fits your goals. Try it risk-free for 30 days. An error occurred trying to load this video. Try refreshing the page, or contact customer support.

Register to view this lesson Are you a student or a teacher? I am a student I am a teacher. Try Study. Cancel anytime. What teachers are saying about Study.

Just checking in. Are you still watching?

Keep playing. Your next lesson will play in 10 seconds. Save Save Save. Want to watch this again later? Create an account. What is Radioactive Dating? Principles of Radiometric Dating. Numerical and Relative Geological Dating.

What is Relative Dating? Relative vs.

Absolute Time in Geology. What is Relative Age? Ocean Drilling as Evidence for Plate Tectonics. What is Carbon Dating? Introduction to Physical Geology: Help and Review. Science Intro to Natural Sciences.

Physical Geology: Certificate Program.

### Radiometric Dating

Weather and Climate Science: Certificate Program. Earth Science Weather and Climate. College Earth Science: Help and Review. Earth Science: Tutoring Solution.

Earth Science: Homework Help Resource. Intro to Astronomy: Help and Review.

Guns, Germs, and Steel Study Guide. Earth Science Intro to Meteorology.

Radiometric dating. Geologists use radiometric dating to estimate how long ago rocks formed, and to infer the ages of fossils contained within those rocks. Radioactive elements decay The universe is full of naturally occurring radioactive elements. Specifically, a process called radiometric dating allows scientists to determine the ages of objects, including the ages of rocks, ranging from thousands of years old to billions of years old to a marvelous degree of accuracy.

Lesson Transcript. Instructor: Rebecca Gillaspy Dr. Radiometric dating is used to estimate the age of rocks and other objects based on the fixed decay rate of radioactive isotopes. Learn about half-life and how it is used in different dating methods, such as uranium-lead dating and radiocarbon dating, in this video lesson.

Radiometric dating (often called radioactive dating) is a technique used to date materials such as rocks or carbon, usually based on a comparison between the observed abundance of a naturally occurring radioactive isotope and its decay products, using known decay rates. Radiometric dating how it works. Does not every day at the creationists have some sedimentary minerals. Major radioactive decay process of the earth, which is the age. Do think that article are present ages of rocks or bother to be used radiometric dating works in certain areas, sometimes called the creationist radioactive. Carbon dating and. Radiometric Dating Does Work! Radiometric dating of rocks and minerals using naturally occurring, long-lived radioactive isotopes is troublesome for young-earth creationists because the techniques have provided overwhelming evidence of the antiquity of the earth and life.

Radiometric Dating The aging process in human beings is easy to see. Radioactive Decay The methods work because radioactive elements are unstable, and they are always trying to move to a more stable state. Half-Life So, what exactly is this thing called a half-life?

Uranium-Lead Dating There are different methods of radiometric dating that will vary due to the type of material that is being dated. Potassium-Argon and Rubidium-Strontium Dating Uranium is not the only isotope that can be used to date rocks; we do see additional methods of radiometric dating based on the decay of different isotopes.

# Why radiometric dating works

Radiocarbon Dating So, we see there are a number of different methods for dating rocks and other non-living things, but what if our sample is organic in nature? Try it risk-free No obligation, cancel anytime. Want to learn more? Lesson Summary Let's review.

## Radiometric Dating: Definition, How Does it Work, Uses & Examples

Learning Outcomes As a result of watching this video, you might be able to: Compare radiometric dating, radioactive decay and half-life Understand that uranium-lead dating is one of the most reliable radiometric dating methods Relate the processes of potassium-argon and rubidium-strontium dating Determine how radiocarbon dating works and recognize why it is important.

Unlock Your Education See for yourself why 30 million people use Study. Become a Member Already a member? Earning Credit. Earning College Credit Did you know We have over college courses that prepare you to earn credit by exam that is accepted by over 1, colleges and universities.

To learn more, visit our Earning Credit Page Transferring credit to the school of your choice Not sure what college you want to attend yet? Browse Articles By Category Browse an area of study or degree level.

Area of Study. Degree Level.

You are viewing lesson Lesson 6 in chapter 2 of the course:. Earth Science Basics. Geologic Time. Characteristics of Earth's Spheres and Internal You have a sneaky, but not especially clever, roommate who doesn't like the ice cream itself, but cannot resist picking out eating the chips - and in an effort to avoid detection, he replaces each one he consumes with a raisin. He is afraid to do this with all of the chocolate chips, so instead, each day, he swipes half of the number of remaining chocolate chips and puts raisins in their place, never quite completing his diabolical transformation of your dessert, but getting closer and closer.

Say a second friend who is aware of this arrangement visits and notices that your carton of ice cream contains 70 raisins and 10 chocolate chips.

She declares, "I guess you went shopping about three days ago. Because your roommate eats half of the chips on any given day, and not a fixed number, the carton must have held 20 chips the day before, 40 the day before that, and 80 the day before that. Calculations involving radioactive isotopes are more formal but follow the same basic principle: If you know the half-life of the radioactive element and can measure how much of each isotope is present, you can figure out the age of the fossil, rock or other entity it comes from.

Elements that have half-lives are said to obey a first-order decay process. They have what is known as a rate constant, usually denoted by k. The relationship between the number of atoms present at the start N 0the number present at the time of measurement N the elapsed time t, and the rate constant k can be written in two mathematically equivalent ways:.

In addition, you may wish to know the activity A of a sample, typically measured in disintegrations per second or dps. This is expressed simply as:. You don't need to know how these equations are derived, but you should be prepared to use them so solve problems involving radioactive isotopes. Scientists interested in figuring out the age of a fossil or rock analyze a sample to determine the ratio of a given radioactive element's daughter isotope or isotopes to its parent isotope in that sample.

With the element's decay rate, and hence its half-life, known in advance, calculating its age is straightforward. The trick is knowing which of the various common radioactive isotopes to look for.

### Why radiometric dating doesn't work

This in turn depends in the approximate expected age of the object because radioactive elements decay at enormously different rates. Also, not all objects to be dated will have each of the elements commonly used; you can only date items with a given dating technique if they include the needed compound or compounds. Uranium-lead U-Pb dating: Radioactive uranium comes in two forms, uranium and uranium The number refers to the number of protons plus neutrons. Uranium's atomic number is 92, corresponding to its number of protons.

The half-life of uranium is 4. Because these differ by a factor of almost seven recall that a billion is 1, times a millionit proves a "check" to make sure you're calculating the age of the rock or fossil properly, making this among the most precise radiometric dating methods.

The long half-lives make this dating technique suitable for especially old materials, from about 1 million to 4. U-Pb dating is complex because of the two isotopes in play, but this property is also what makes it so precise.

The method is also technically challenging because lead can "leak" out of many types of rocks, sometimes making the calculations difficult or impossible. U-Pb dating is often used to date igneous volcanic rocks, which can be hard to do because of the lack of fossils; metamorphic rocks; and very old rocks.

If we know the number of radioactive parent atoms present when a rock formed and the number present now, we can calculate the age of the rock using the decay constant. The number of parent atoms originally present is simply the number present now plus the number of daughter atoms formed by the decay, both of which are quantities that can be measured.

Samples for dating are selected carefully to avoid those that are altered, contaminated, or disturbed by later heating or chemical events.

In addition to the ages of Earth, Moon, and meteorites, radiometric dating has been used to determine ages of fossils, including early man, timing of glaciations, ages of mineral deposits, recurrence rates of earthquakes and volcanic eruptions, the history of reversals of Earth's magnetic field, and the age and duration of a wide variety of other geological events and processes.

The age equation The mathematical expression that relates radioactive decay to geologic time is. D is number of atoms of the daughter isotope in the sample. D0 is number of atoms of the daughter isotope in the original composition.